Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649280

RESUMO

BACKGROUND: The immune status of a patient's tumor microenvironment (TME) may guide therapeutic interventions with cancer immunotherapy and help identify potential resistance mechanisms. Currently, patients' immune status is mostly classified based on CD8+tumor-infiltrating lymphocytes. An unmet need exists for comparable and reliable precision immunophenotyping tools that would facilitate clinical treatment-relevant decision-making and the understanding of how to overcome resistance mechanisms. METHODS: We systematically analyzed the CD8 immunophenotype of 2023 patients from 14 phase I-III clinical trials using immunohistochemistry (IHC) and additionally profiled gene expression by RNA-sequencing (RNA-seq). CD8 immunophenotypes were classified by pathologists into CD8-desert, CD8-excluded or CD8-inflamed tumors using CD8 IHC staining in epithelial and stromal areas of the tumor. Using regularized logistic regression, we developed an RNA-seq-based classifier as a surrogate to the IHC-based spatial classification of CD8+tumor-infiltrating lymphocytes in the TME. RESULTS: The CD8 immunophenotype and associated gene expression patterns varied across indications as well as across primary and metastatic lesions. Melanoma and kidney cancers were among the strongest inflamed indications, while CD8-desert phenotypes were most abundant in liver metastases across all tumor types. A good correspondence between the transcriptome and the IHC-based evaluation enabled us to develop a 92-gene classifier that accurately predicted the IHC-based CD8 immunophenotype in primary and metastatic samples (area under the curve inflamed=0.846; excluded=0.712; desert=0.855). The newly developed classifier was prognostic in The Cancer Genome Atlas (TCGA) data and predictive in lung cancer: patients with predicted CD8-inflamed tumors showed prolonged overall survival (OS) versus patients with CD8-desert tumors (HR 0.88; 95% CI 0.80 to 0.97) across TCGA, and longer OS on immune checkpoint inhibitor administration (phase III OAK study) in non-small-cell lung cancer (HR 0.75; 95% CI 0.58 to 0.97). CONCLUSIONS: We provide a new precision immunophenotyping tool based on gene expression that reflects the spatial infiltration patterns of CD8+ lymphocytes in tumors. The classifier enables multiplex analyses and is easy to apply for retrospective, reverse translation approaches as well as for prospective patient enrichment to optimize the response to cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Linfócitos do Interstício Tumoral , Transcriptoma , Microambiente Tumoral , Humanos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Feminino , Masculino , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/patologia
2.
Front Oncol ; 13: 1157596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37207143

RESUMO

Introduction: Angiopoetin-2 (Ang-2) is a key mediator of tumour angiogenesis. When upregulated it is associated with tumour progression and poor prognosis. Anti-vascular endothelial growth factor (VEGF) therapy has been widely used in the treatment of metastatic colorectal cancer (mCRC). The potential benefit of combined inhibition of Ang-2 and VEGF-A in previously untreated patients with mCRC was evaluated in the phase II McCAVE study (NCT02141295), assessing vanucizumab versus bevacizumab (VEGF-A inhibitor), both in combination with mFOLFOX-6 (modified folinic acid [leucovorin], fluorouracil and oxaliplatin) chemotherapy. To date, there are no known predictors of outcome of anti-angiogenic treatment in patients with mCRC. In this exploratory analysis, we investigate potential predictive biomarkers in baseline samples from McCAVE participants. Methods: Tumour tissue samples underwent immunohistochemistry staining for different biomarkers, including Ang-2. Biomarker densities were scored on the tissue images using dedicated machine learning algorithms. Ang-2 levels were additionally assessed in plasma. Patients were stratified by KRAS mutation status determined using next generation sequencing. Median progression-free survival (PFS) for each treatment group by biomarker and KRAS mutation was estimated using Kaplan-Meier plots. PFS hazard ratios (and 95% confidence intervals) were compared using Cox regression. Results: Overall low tissue baseline levels of Ang-2 were associated with longer PFS, especially in patients with wild-type KRAS status. In addition, our analysis identified a new subgroup of patients with KRAS wild-type mCRC and high levels of Ang-2 in whom vanucizumab/mFOLFOX-6 prolonged PFS significantly (log-rank p=0.01) by ~5.5 months versus bevacizumab/mFOLFOX-6. Similar findings were seen in plasma samples. Discussion: This analysis demonstrates that additional Ang-2 inhibition provided by vanucizumab shows a greater effect than single VEGF-A inhibition in this subpopulation. These data suggest that Ang-2 may be both a prognostic biomarker in mCRC and a predictive biomarker for vanucizumab in KRAS wild-type mCRC. Thus, this evidence can potentially support the establishment of more tailored treatment approaches for patients with mCRC.

3.
J Immunother Cancer ; 8(1)2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32414858

RESUMO

OBJECTIVES: The interaction between the immune system and tumor cells is an important feature for the prognosis and treatment of cancer. Multiplex immunohistochemistry (mIHC) and multiplex immunofluorescence (mIF) analyses are emerging technologies that can be used to help quantify immune cell subsets, their functional state, and their spatial arrangement within the tumor microenvironment. METHODS: The Society for Immunotherapy of Cancer (SITC) convened a task force of pathologists and laboratory leaders from academic centers as well as experts from pharmaceutical and diagnostic companies to develop best practice guidelines for the optimization and validation of mIHC/mIF assays across platforms. RESULTS: Representative outputs and the advantages and disadvantages of mIHC/mIF approaches, such as multiplexed chromogenic IHC, multiplexed immunohistochemical consecutive staining on single slide, mIF (including multispectral approaches), tissue-based mass spectrometry, and digital spatial profiling are discussed. CONCLUSIONS: mIHC/mIF technologies are becoming standard tools for biomarker studies and are likely to enter routine clinical practice in the near future. Careful assay optimization and validation will help ensure outputs are robust and comparable across laboratories as well as potentially across mIHC/mIF platforms. Quantitative image analysis of mIHC/mIF output and data management considerations will be addressed in a complementary manuscript from this task force.


Assuntos
Imunofluorescência/métodos , Imuno-Histoquímica/métodos , Imunoterapia/métodos , Coloração e Rotulagem/métodos , Microambiente Tumoral/fisiologia , Humanos
4.
J Virol ; 84(6): 3033-42, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20042501

RESUMO

Recent studies of primate models suggest that wild-type measles virus (MV) infects immune cells located in the airways before spreading systemically, but the identity of these cells is unknown. To identify cells supporting primary MV infection, we took advantage of mice expressing the MV receptor human signaling lymphocyte activation molecule (SLAM, CD150) with human-like tissue specificity. We infected these mice intranasally (IN) with a wild-type MV expressing green fluorescent protein. One, two, or three days after inoculation, nasal-associated lymphoid tissue (NALT), the lungs, several lymph nodes (LNs), the spleen, and the thymus were collected and analyzed by microscopy and flow cytometry, and virus isolation was attempted. One day after inoculation, MV replication was documented only in the airways, in about 2.5% of alveolar macrophages (AM) and 0.5% of dendritic cells (DC). These cells expressed human SLAM, and it was observed that MV infection temporarily enhanced SLAM expression. Later, MV infected other immune cell types, including B and T lymphocytes. Virus was isolated from lymphatic tissue as early as 2 days post-IN inoculation; the mediastinal lymph node was an early site of replication and supported high levels of infection. Three days after intraperitoneal inoculation, 1 to 8% of the mediastinal LN cells were infected. Thus, MV infection of alveolar macrophages and subepithelial dendritic cells in the airways precedes infection of lymphocytes in lymphatic organs of mice expressing human SLAM with human-like tissue specificity.


Assuntos
Antígenos CD/imunologia , Células Dendríticas/virologia , Tecido Linfoide/virologia , Macrófagos Alveolares/virologia , Vírus do Sarampo/metabolismo , Sarampo/imunologia , Receptores de Superfície Celular/imunologia , Animais , Antígenos CD/genética , Células Dendríticas/metabolismo , Humanos , Pulmão/citologia , Pulmão/imunologia , Pulmão/virologia , Tecido Linfoide/metabolismo , Macrófagos Alveolares/metabolismo , Sarampo/patologia , Vírus do Sarampo/patogenicidade , Camundongos , Camundongos Transgênicos , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia , Receptores de Superfície Celular/genética , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária
5.
Infect Immun ; 72(6): 3276-83, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15155630

RESUMO

We investigated the ability of using monoclonal antibodies (MAbs) against anthrax protective antigen (PA), an anthrax exotoxin component, to modulate exotoxin cytotoxic activity on target macrophage cell lines. Anthrax PA plays a critical role in the pathogenesis of Bacillus anthracis infection. PA is the cell-binding component of the two anthrax exotoxins: lethal toxin (LeTx) and edema toxin. Several MAbs that bind the PA component of LeTx are known to neutralize LeTx-mediated killing of target macrophages. Here we describe for the first time an overlooked population of anti-PA MAbs that, in contrast, function to increase the potency of LeTx against murine macrophage cell lines. The results support a possible mechanism of enhancement: binding of MAb to PA on the macrophage cell surface stabilizes the PA by interaction of MAb with macrophage Fcgamma receptors. This results in an increase in the amount of PA bound to the cell surface, which in turn leads to an enhancement in cell killing, most likely due to increased internalization of LF. Blocking of PA-receptor binding eliminates enhancement by MAb, demonstrating the importance of this step for the observed enhancement. The additional significance of these results is that, at least in mice, immunization with PA appears to elicit a poly-clonal response that has a significant prevalence of MAbs that enhance LeTx-mediated killing in macrophages.


Assuntos
Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Facilitadores , Toxinas Bacterianas/toxicidade , Macrófagos/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Monoclonais/sangue , Antígenos de Bactérias/imunologia , Bacillus anthracis/metabolismo , Bacillus anthracis/patogenicidade , Toxinas Bacterianas/imunologia , Células CHO , Linhagem Celular , Cricetinae , Humanos , Macrófagos/fisiologia , Camundongos , Receptores Fc/metabolismo , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...